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ABSTRACT

-We-discuss the initial value problem in one-dimensional linear visco-

elasticity with a step-jump in the initial data. If the memory kernel is

sufficiently smooth on [0,T), the solution exhibits discontinuities

propagating along characteristics and a (higher order) stationary

discontinuity at the position of the original step-jump. For a singular

memory kernel, the propagating waves are smoothed in a manner depending on the

nature of the singularity in the kernel, but the stationary discontinuity

remains. we also discuss the effects of these phenomena on the regularity of

solutions with arbitrary initial data.
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SIGNIFICANCE AND EXPLANATION

The possibility of discontinuities in solutions to equations which model

motions of viscoelastic media has received a lot of attention. In this paper,

we study linear initial value problems with jump discontinuities in the

data. The solutions of such problems can exhibit two types of singularities:

(i) those which propagate along characteristics, and (ii) stationary

discontinuities at the positions of the original jumps in the data.

In particular, we are interested in models with singular memory

kernels. There are indications, both theoretical and experimental, that

singular kernels are a realistic possibility for certain viscoelastic

materials. Such kernels have a smoothing effect on the propagating waves.

The degree of smoothing depends on the nature of the singularity in the

kernel. Some examples lead to C-smoothing even though the wave speed is

finite. There are also cases in which the degree of smoothing increases in a

manner proportional to time. Kernels with very weak singularities produce

only an infinitesimal gain in regularity. Although singular kernels tend to

increase the regularity of propagating waves, they do not have any smoothing

effect on the stationary discontinuities. We also discuss the implications of

these results for problems with arbitrary initial data.

The responsibility for the wording and views expressed in this descriptive
summary lies with MAC, and not with the authors of this report.
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1. Introduction

In this paper, we study linear wave propagation in a one-dimensional viscoelastic

medium. That is, we study the equation

(1.1) utt(x,t) - bux,(x,t) + ft m(t-')(u (xt) - U (XT))dT, x e D c 3, t > 0

where b is a nonnegative constant and m is a positive, monotone decreasing kernel.

(For fluids b - 0, while for solids b ) 0.) We are interested in initial value problems

with D - R and discontinuous initial data. More precisely, we shall study situations

where u is identically zero for t < 0, i.e.

(1.2) u(x,t) - 0, x e R, t < 0

but there is a spatial jump in the instantaneous values of u and ut at time t - 0.

Specifically, we look at the following types of initial conditions

(1.3a) u(x,O) = agn x, ut(x,0) - 0, x e R ,

(1.3b) u(x,O) = 0, ut(x,0) I 1-jgn x, x S R .

(More general initial conditions can be treated by superposition.)

There have been a number of studies of the so-called Rayleigh problem, i.e. (1.1) on

the half line D - [0,0) with u - 0 for t < 0 and a step-jump in the boundary value

of u at t - 0 [2, 4-7, 11, 17, 18, 20-22, 24]. If the kernel m is sufficiently

smooth (including the point 0), then the discontinuity at the boundary wIll propagate

with constant speed into the interior, and its amplitude will decay exponentially in

time. On the other hand, Renardy [22] has shown that certain singular kernels lead to

smoothing of the discontinuity. More precisely, he considered the Rayleigh problem with a

II
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class of kernels for which m(t-T) behaves like a negative power of (t-T) near zero, and

showed that that solution is of class C for t > 0. For cases involving an integrable

singularity in m, C -smoothing coexists with finite speed of propagation [22].

There have been several studies of linear integrodifferential equations in Banach

spaces which show that singular kernels can have a regularizing effect on solutions. See,

for example, (151 and the references therein.

Hannsgen and Wheeler [14] have shown that the evolution operator associated with (1.1)

has a certain compactness property if and only if m(04 ) = ". This indicates that singular

kernels lead to smoothing of solutions, but does not characterize the degree of

smoothing. In fact, as we shall see from examples, the degree of smoothing cannot be

specified without some definite assumption on the nature of the singularity in m.

A new feature that arises in the initial value problem with interior discontinuities

in the data is the emergence of stationary singularities in u. Initial conditions (1.3a)

and (1.3b) lead to solutions with discontinuities in u,, across x - 0.

(A notable exception occurs for b = 0, m(t) 2 Ke- Ut, and initial conditions (1.3a), in

which case u is smooth across x - 0 for t > 0.) The possibility of such stationary

singularities for hyperbolic equations with memory was pointed out by Greenberg, Hsiao, and

MacCamy [12], [13], [19], but does not seem to have received much attention otherwise. In

addition to the stationary singularity, there will be waves propagating to both sides. The

propagating waves are given by the same kinds of expressions as those obtained in the

Rayleigh problem, and consequently the same regularity results apply.

If m is smooth on [0,-), there will be propagating discontinuities. For an

appropriate class of kernels with power-type singularities, the propagating waves will he

of class C". Here we also study kernels with logarithmic singularities, for which we find

that the regularity of the propagating waves increases in a manner proportional to time.

Sufficiently weak singularities in m (such as log-log) produce only an "infinitesimal"

gain in regularity. It is interesting to note that although singular kernels have a

smoothing effect on propagating waves, they do not smooth out the stationary

discontinuities.
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By superposition, these results can be used to study the regularity of solutions with

arbitrary initial data, say of class He. This is discussed briefly in the last section.

If m is smooth on (Ow), then the strongest singularities in u are always the

propagating ones. Roughly speaking, the solution preserves the smoothness of th- data.

If, however, the kernel has a power-type singularity, the propagating waves will be C

and there will be a fixed (but finite) gain in regularity determined by the stationary

discontinuities. The case of a logarithmic singularity in m is particularly interesting.

The regularity of u is determined initially by the propagating waves and increases in a

manner proportional to time until the propagating waves and stationary singularities are of

the "same strength". Then, the stationary singularities dominate and regularity does not

improve any further.

In order to focus ideas and avoid complicated technical hypotheses, we restrict our

attention to specific classes of singular kernels that are given by infinite sums of

exponentials. (Kernels of a similar structure appear in some rheological models which have

been motivated by molecular considerations (9], (23], [25].) It is clear that our

arguments can be applied to more general classes of kernels with similar types of

singularities.

Throughout this paper, the operations of differentiation, convolution, and Laplace

transformation should be interpreted in the sense of tempered distributions. (See, for

example, (10].) We shall not dwell on this point. However, we note that the classical and

distributional definitions agree for sufficiently regular functions. Moreover, since the

distributional definition of an operation typically involves performing the operation on

smooth test functions, there is generally no difficulty with changing the order of

"limiting" operations. In particular, the order of "differentiation with respect to x"

and "Laplace transformation with respect to t" can always be interchanged in the

distributional setting.

Acknowledgements We are indebted to Yuriko Renardy for some valuable suggestions.
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2. Initial value Problems with Step-Jump Initial Conditions

In this section we investigate solutions of (1.1) with D - R. We assume throughout

that m is nonnegative and nonincreasing, but m 1 0, and that b 0 0. We are interested

in situations where u E 0 for t < 0, but initial conditions (1.3a) or (1.3b) hold as

t * 0+. To solve (1.1), we introduce Laplace transforms with respect to the time variable:

(2.1) U(xo) = J e- tu(xt)dt

Observe that (1.3a), (1.3b) can be subsumed under

(2.2) u(x,O) a 1 gn x, u (x,O) ) 8sgn x

It is easy to see that (1.1), (1.2), (2.2) lead to the equation

(2.3) X2 u(xX) - aX u sgn x - -1 0 sgn x - (bm(0)-m))u (xA)2 2 xx
W kthat "e() - s(A)" should be interpreted as jO- m(t)(1-e'Xt)dt, which may(We remarktht mt(etdt wicma

converge even if m has a nonintegrable singularity at 0, i.e. m(0) and m(A) do not

make sense separately.)

For fixed A this is an ordinary differential equation which is easily solved. We

find that

(2.4) u(x,X) = (X+8)1---. sgn x - - H(x)exp(-Xx//b + ;M() - ;(X)
2X

2  2A
2

+ 2A. (-x)exp( x/ib + () () )

where H denotes the Heaviside step function. The solution of (1.1), (1.2), (2.2) is

obtained by taking the inverse Laplace transform of u. Although this procedure has been

purely formal, it can be justified rigorously under rather mild assumptions on m. See

[201 for a discussion of this in a similar situation.

For x, t > 0 we have

(2.5) u(x,t) 2 . (-+Bt) - .. O +YW+ ) - ;W
2 4wi y-i- [ + )exp(-Ax/b + X -

where y is any positive number, and the integrand is made single-valued in the usual

way. A similar expression holds for x < 0. In fact, u(-x,t) - -u(x,t) for all

x, t > 0. Observe that if m(O) - m(A) is well-defined (in particular, if m e L (M,)

-4-



or if 1 tm(t)dt < * and f" m(t)dt < *), then

i) Re(;(O) - ;(k)) > 0 for Re A > 0

Mtt) Is(i(O) - ;(A)) > 0 for Re X > 0, IM X > 0

(iii) Im(r(O) - ;e(X)) < 0 for Re A > 0, IM A < 0

by virtue of our sign conditions on m.

We note that if m belongs to L (0,-) then the solution of (1.1), (1.2), (2.2) has

finite speed of propagation. Indeed, for m e L (0.), the Riemann-Lebesgue lemea implies

that ;(A) - 0 as X + *, Re X > 0. Consequently, the contour of integration in (2.5) can

be closed by a circle on the right if x > t * b + ;(0). Since the integrand has no

sinqularities with Re A > 0, it follows from Cauchy's theorem that the integral in (2.5)

vanishes for x > t * b + ;(0). (See [4].) The situation is analogous for

x < -t • + ;(0).

A. Regular Kernels

Our objective here is to describe the regularity of solutions when the kernel m is

smooth on [0,-). In order to highlight the main ideas and avoid repeated hyptheses, we

assume that

" (k) 1

(2.6) m e C [0,"), Is e L (0,") V k - 0,1,...

i.e. that m and its derivatives of all orders are continuous on [0,-) and integrable.

It follows that ;MA) can be approximated asymptotically by a power series in - as

. * -, Re A > 0. This can be used to study smoothness properties of the solution. (See

We first discuss the situation for x > 0. Away from the line x - t /b + ;(0),

u is of class C Across this line, u sustains a jump discontinuity in case (1.3a).

-5-



while in case (1.3b), u is continuous but u, and ut jump. The amplitudes of these

jumps decay exponentially in time. In fact, for x > 0 the solution of (1.1), (1.2),

(2.2) can be written in the form

(2.7) u(x,t) - (a + Ot)

22

3, exp[-m(0)x/2(b + m(0)) I - H(t - F_______0

5/2 -m(O lb + aCO)]
- [ B m' (0)ax - 3um(0)2 x ](xp-( 0 ) /2/b + m(0)J

2 (b + m (0 ) )
3 2  8 (b + m (0 ) ) 

5/ 2

x x

(t- -- )- H(t -

+ F(x,t)

where F is of class C1 across the line x - t * /b + m(0) and of class C elsewhere,

and F(x,t) - 0 for x > t " ib + m(0). Expressions such as (2.7) are, of course, well

known. (See, for example, [21.)

The situation is completely analogous for x < 0. Thus, the behavior of u away from

the line x - 0 is quite similar to the case of a linear wave equation with frictional

damping. However, across x - 0 solutions of (1.1), (1.2), (2.2) generally exhibit

discontinuities in uxx which do not occur for equations without memory. (An exception

arises in the special case m(t) =Ke- 
t , b = 0 and initial conditions (1.3a) hold.)

Discontinuities of this type have been discussed in a series of papers (concerning Riemann

problems for first order hyperbolic equations with memory) by Greenberg, Hsiao, and MacCamy

[121, (131, [191, but do not seem to have received much attention otherwise.

Away from the lines x - 0, x = i t - lb + ;(0), u is of class C . Moreover, for

t > 0, all derivatives of u have (finite) right and left limits as x + 0. It is not

difficult to show that u, ut, ux , utt, utx (and uxt) are continuous across x = 0. To

investigate the possibility of a stationary discontinuity in Uxx, we set

(2.8) J(t) Ux(0+,t) - Uxx(0o,t) V t > 0

It follows from (2.4) and a straightforward computation that

-6-
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(2.9) 3) -______________________ 2(b+M(0)) (b+m(O)-m(A))

We note that the distributional derivative Uxx is the sum of a function and a

distribution supported on the lines x - ± t b + m(0) (which arises from the propagating

jumps described above). The part of uxx which is supported on these lines makes no

contribution to J(t) and has been *subtracted off" in our derivation of (2.9). If one

were to drive an expression for 3(A) by simply taking right and left derivatives as

x + 0 in (2.4), then this expression would contain additional terms corresponding to a

distribution with support at 0.

The first question that we address regarding J is whether or not there are any

(nontrivial) situations in which J vanishes identically. It is clear from (2.9) that if

02 + 82 0 0 and J B 0, then m must be an exponential of the form

(2.10) m(t) Ke- t  , K, P > 0

(Recall our sign assumptions on m.) Further examination of (2.9) reveals that under

initial conditions (1.3a), J B 0 if and only If b - 0 and m Is of the form (2.10).

Moreover, for initial conditions (1.3b) there are no cases in which J vanishes

identically. If values of m, 0 other than those corresponding to (7.3a), (1.3b) are

considered, then there will be additional situations in which J E 0, eg. a - 0 = 1,

b - -, K - 1, u - 2. (These can easily be characterized using (2.13), (2.14), (2.15)

below.)

We note that 3 e C[0,-). An expression for J(0) can be found by computing

lim A3M). The outcome of this simple computation is

()oO)+Q(b+lO))i'O)+O(b+m(O))m(O)(2.11) 3(0) =- -m0
(b+m(O))

Observe that if b - 0 and initial conditions (1.3b) hold, then J() has a pole (or

worse) at A - 0 and consequently one should not expect decay of J(t) as t + -. On the

other hand, our sign conditions on m imply that if b > 0 or if b - 0,

tm(t) e L1 (0,-), and initial conditions (1.3a) hold, then ;(A) has no poles with

Re A ) 0, and one does expect that J(t) + 0 as t * -.

-7-.



By virtue of (2.6), our sign conditions on m, and the Riemann-Lebesque lemma, it

follows from (2.9) and Proposition 2.3 of [16] that J e L (o,") if b > 0 or if

b = 0 - 0 and tm(t) e L (0,). By the same kind of reasoning, we find that ' also

belongs to LI (0,) under either of the above corditions. (in fact, so do all higher

order derivatives of J.) We therefore conclude that if b > 0 or if b - B = 0 and

tm(t) e L (0,-), then J(t) * 0 as t + ".

A similar argument can be used to handle the case when b - 0 and initial conditions

(1.3b) hold. Examination of (2.8) suggests that J(t) + ((m)'(O)] -(] Tm(T)dt) as

t + -. The idea, then, is to show that j., J e L 1(0,), where

(2.12) J.(t) J(t) - ((m)'(0)
-  

Vt ; 0

If we assume that b - 0, tm(t) e L (0,-), and initial conditions (1,3b) hold, then it

follows from Proposition 2.3 of (161 and some routine computations that J3, J4 e LI0,"),

and consequently J.(t) * 0 as t - -, i.e. J(t) + -(J Tm(Y)dT)
- I 

as t 4 W.

The asymptotic behavior of J can thus be summarized as follows. If b > 0, then

J(t) + 0 as t 4 0. If b - 0 and tm(t) e L (0,-), then J(t) * -B(J: Tm(r)dt)
- 1 

as

t * 1. This last result suggests that if b = 0 and m(t) - t
- {I+

(
)  

as t + - with

0 < 8 4 1, then 3(t) * 0 as t + -; however, we have been unable to prove it. See the

paper of Chu 16] for an interesting discussion of the asymptotic behavior of u as t * -

along lines of the form x = a't, a > 0.

Since the Laplace transform of a function (or, more generally, a distribution) with

compact support is necessarily an entire function, if follows immediately from (2.9) that

if b = 0 and 8 0 0 then the discontinuity in Uxx persists for all t > 0. This is

also the case in a number of other situations. In particular, we have been able to show

that the support of J is unbounded if b > 0, 0 4 0, and 2 + B2 Y 0, or if m has

compact support and u2 + 02 # 0. The proof is straightforward, but not entirely

t~ivial. We omit the details. (See additional comments concerning completely monotonic

kernels in part E below.)

-8-



An interesting expression for J can be obtained by expanding lb + m() -(

in powers of m(X)/(b + m(O)) and formally inverting (2.9) as a sum of iterated

convolutions. The series for J obtained in this manner converges in LI (0,) if b > 0

and in L I  C0,) if b - 0. This provides an alternate proof of the integrability ofLoc

J when b > 0.

The situation is particularly simple for a single exponential of the form (2.10). As

noted above, for b = 0 and initial conditions (1.3a) we have J S 0. Moreover, in this

case it is straightforward to show that higher order derivatives of u are continuous

across x = 0. For b ) 0 and initial conditions (1.3a), we conclude from (2.8) that

(2.13) J(t) - bK exp[-vbt/(b+r)]
(b+r)3

where

(2.14) r - m(0) - K/U

A similar expression holds for initial conditions (1.3b), namely

(2.15) i(t) - -K exp-ubt/(b+r)]
(b+r)2

It is interesting to observe that for b - 0 and the kernel (2.10), the initial value

problem (1.1), (1.2), (2.2) is equivalent to

(2.16) utt(x,t) + Put(xt) = U (xt) + Ua sgn X

with initial conditions (2.2). We see from equation (2.16) that if B ' 0 then the

solution must have a singularity across x = 0. Recalling that ut and utt are

continuous across x = 0 we can deduce directly from (2.16) that J(t) = -U2 B/K, which

agrees with our previous expressions for this case.

S. Kernels with Power-Type Singularities:

In [22), Renardy studied the Rayleigh problem for the class of singular kernels

npt
(2.17) m(t) e -nt I 1

n 1

As t + 0+, m(t) behaves like t" /P. Accordingly, m is integrable if p > 1. For

p > 1, we have

-9-



(2. 18) =( )2-

n-1 A+np

while for - ( p 4 1 we interpret m(O) -mC as

(2.19) J 1  t)~~~
n.I nP()+n p )

Using the results of (22!, we can immediately draw the following conclusions regarding

(1.1), (1.2), (2.2) with m given by (2.17): For p > I the solution u is analytic

away from the lines x - 0, x - * t I b + ;(0), it is of class CM across the lines

x - t - b + m(0), and it propagates with finite speed; for - < p 4 1, u is analytic

away from the line x - 0. Thus the singularity in m smooths out the propagating

waves. However, it does not smooth out the stationary discontinuity in uxx.

By deforming the contour of integration in (2.5) as indicated below, it is straight-

forward to show that u and its derivatives of all order have (finite) limits as x 0+

for t > 0.

Re X

Fig. 1. Contour of Integration

For p > 1, this contour can be used provided that 0 < x ( t / .b + ;(0); if

i< p 4 1, it can be used for all x, t > 0. The situation is similar as x + 0-.

moreover, u, ut, u,, utt, and Utx are continuous across x = 0 for t > 0.

-10-



Our previous expression for J(M) is not valid under the present circumstances.

Nevertheless, it is not too difficult to show that uxx is discontinuous across x - 0.

The argument proceeds roughly as follows. Using (2.4) we find that

2.20) u (x,A) -(+) as x 0
xx 2(b+m(O)-m(A))

(We note that there is no problem with interchanging the order of differentiation with

respect to x and taking Laplace transforms - even in the classical sense - for x > 0.)

Suppose that uxx is continuous across x - 0 for t > 0. Then, it is easy to see that

Uxx(0,t) - 0 for all t > 0 and consequently uxx(x,t) + 0 uniformly for t in compact

subsets of (0,-) as x + 0+. It follows that the expression on the right-hand side of

(2.20) must be the Laplace transform of a distribution with support at 0, i.e. it must be

a polynomial in I. However, it is easy to show that the expression in question is not a

polynomial, and we conclude that Uxx is discontinuous across x - 0 (provided, of

course, that C
2 + B2 0 0.)

The discontinuity in uxx persists for all t > 0. Indeed, using the contour of

Figure 1 in the inversion integral, one readily sees that the jump 3(t) (defined by

(2.8)) is analytic in t > 0. Therefore, since J 1 0, it cannot vanish identically on an

interval of the form CT,-).

One can also argue as follows to show that the support of 3 is unbounded: If 3

had compact supportthen the expression on the right-hand side of (2.20) would be the

Laplace transform of a distribution with compact support and hence an entire function of

A. Examination of (2.18) and (2.19) reveal that this cannot be the case (unless, of

course, a = B = 0).

C. Kernels with Logarithmic Singularitiest

An example of kernel which behaves nicely at infinity and has a logarithmic

singularity at zero is given by

(2.21) m(t) a -
n-O

To verify this, we note that the asymptotic behavior as t * 0+ does not change if the sum

-11-



is approximated by an integral. More precisely, using the estimate

(2.22) 11-0 f(v)dv I f(nfl 4 Jf", (v)dV
n-1

with f(v) - exp(-e Vt), we find that

V - n

(2.23) -J e t dv - -ent1 4 e- t  V t > 0
n I

We then observe that
V V+Lnt

(2.24) ;-e td v - e  dv

0V

= ';nt e- dv

e edv + 1 0 eedv

The last term in (2.24) clearly has a logarithmic singularity as t 0+ . We note also

that m e L 1(0,-).

It follows from (2.21) that

(2.25) MM 1
nl I +en

To determine the asymptotic behavior of ;(A) as 1X1 + - we set Y Re X, m - XJ ,

and observe that

(2.*26) 12~ gn 1 XX+eV

Using (2.26) and the estimate (2-22) with f(v) - (X+eV) 1  we deduce that

(2.27) ;(X) n(I-A) + 0(1*1 "1) as 1*1 
Therefore, we have

(2.28) + A • • + + 0(1)
(b + m(+) - m(L) m(O)) 2(b + M(0))3

and consequently

(2.29) exp(-Ax/.b + -(o) -Z),

- expx: -Xx 1 ( 1p, 2xx ) .(.)1
(b + m(0)) 2(b + m(O))

uniformly for x in bounded sets as 101 + -.
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Since m belongs to L1 (0,"), the integral in (2.5) vanishes if x > t /b ;to).

For 0 < x < t * b + m(0), we can deform the contour of integration as shown in Figure 1.

Along this contour, the integral is absolutely convergent and remains absolutely convergent

if x and t are extended into the complex plane. We can therefore easily conclude

that u is analytic in the region 0 < x < t b ;(o).

The regularity of u across the line x - t * lb + ;(0) is directly related to the

decay of expf-x Ln(1+X)/2(b + m(0)) 3/ 2  as XI W. Since this term behaves like a

negative power of A with exponent proportional to x, we can deduce from (2.5), (2.27),

and (2.29) that the regularity of u across the line x - t * b + m(0) increases in a

manner proportional to x (or equivalently proportional to t).

It is interesting to observe that discontinuities in the initial data become

continuous instantaneously. More precisely, the solution of (1.1), (1.2), (1.3a) is

continuous across x - t * lb + ;(0) for t > 0, and the solution of (1.1), (1.2), (1.3b)

is of class C1 across x - t * Fb+ m(0) for t > 0. This follows immediately from the

decay properties of the integrand in (2.5).

The situation is, of course, completely analogous for x < 0. Arguing as before, one

can show that u and its derivatives of all orders have (finite) right and left limits as

x + 0 for t > 0. Moreover u, ut, Ux, utt, end utx are continuous across the line

x - 0 for t > 0. However, uxX sustains a jump discontinuity across this line, as

before the discontinuity persists for all t > 0 if a2 + 02 0 0.

D. Kernels with Weaker Singularities

As the previous examples show, the regularity of u across the lines

x - t / b + m(0) depends crucially on the behavior of m(t) as t + 0+. Weak

singularities in m generally lead to less smoothing than strong singularities do. In

fact, a sufficiently weak singularity in m will produce a gain in regularity which is

effectively infinitesimal. We illustrate this with the kernel

n
(2.30) m(t) - exp(-t.e a

n-1

-13-



which has a log-log sinqularity at 0.

As before, the behavior of m near 0 and the behavior of 3 near infinity do not

change if the sum is approximated by an integral. 7b verify the nature of the singularity

in m, we observe that for t < 1,

V

(2.31) Jo exp('tee )dv

= InlLn t1 exp[.e(ev+in t ldv

+ ';njtn tlexp
- e(e V

n t)]dv

The integrand in the first term on the right-hand side is bounded above and below by

positive constants, hence this term' behaves like InJtn ti as t -0+. With the substi-

tution n - v - LnjIn ti, the second integral becomes

(2.32) J exp[
- e

(e )n_ 
I
2n tI Idn

which is clearly bounded as t * 0
+
. Using (2.22), it is easy to see that the difference

between m(t) and the integral on the left-hand side of (2.31) remains bounded as t # 0+ .

We have thus verified that m has a log-log singularity at 0.

It follows from (2.30) that

(2.33) m1A1- • ,)
n-1 +exp(e"

)

and again the asymptotic behavior as I)* does not change if the sum is approximated

by an integral. (As in part C, the error in this approximation is O(1*1-1).) For real

A, let us set

(2.34) I(A) - dv
0 V

l+exp(e

With the substitution w = exp(e ), we find that

(2.35) I(A) a ( v)w In W

X dw + datSf-e (l+w)w In w (+w)w In w

Expanding (X+w) -  
in powers of w/I and X/w, respectively, and then making the

substitution v = In w, we see that

-14-



1 n-i

(2.36) z() m (_,)n,-n f X - dw
n-0

+ _ln nj dw
A n+2£

n-0 w mW

, 1 n n A

+ I1 n _ln-n i1n A a-nV dv

n-1

+ I (-I) n Xn dv
n-0 I en ve(n+l)v

Inln A + L [Ei(n In X) - 31(n)]

nn+ i (-I) X lEi(tl+i)Lfl X)
n I

where Ei denotes the exponential integral. (See, for example, page 228 of [1].) The

second term in the last line is 0(--) as X - and using formula 5.1.51 on page 231 of
A2

(1] we find that

(2.37) (-1) nXni..n+l)Ln ) - n2+ 0

n-1 +-n o( A)m )

We therefore conclude that

0 A+exp(e ) X(Ln ))

as X + 0. By analytic continuation, (2.38) holds for complex A in a right half plane.

Since the difference between m(I) and the integral in (2.38) is 0(1*1"1), we have

(2.39) ;(A) - nn X + o(11")

as Ii, * * for suitable Y > 0. (Recall that y - Re A and * Im A.)

Away from the lines x - * t /b + ;(0), the smoothness properties of u are

exactly the same as in part C. It follows from (2.39) that the integrand in (2.5) can be

written in the form
K

(2.40) exp[A(t - ,* G(xA) 12.. + L5

-15-2



where G(xA) decays like a negative power of fln XI with exponent proportional to x.

The factor G(x,k) leads to an "infinitesimal" gain in regularity across the line x -

t * /b + ;O). The situation is, of course, completely analogous for x < 0.

It is interesting to observe that for t sufficiently large, the solution of (1.1),

(1.2), (1.3a) is continuous across the lines x - * t , b + ;(0) and the solution of

(1.1), (1.2), (1.3b) is of class C
1 

across these lines. (Indeed, the appropriate

inversion integrals converge absolutely if Ixf is sufficiently large.) We conjecture

that the above continuity properties actually hold for all t > 0, but have been unable to

prove it. The difficulty lies in obtaining a suitable error estimate for our approximation

of m(A). One can show that the principal term in (2.39) leads to a function which is

continuous across x = t • A + ;(01. However, even though the remainder decays more

rapidly than the principal term as JAI + -, its decay rate is not sufficient to guarantee

the desired continuity. Thus, more detailed information is needed.

We can prove contuity of the wave front for the kernel given by

V
(2.41) m(t) fexp(-t * a )dv

which also has a log-log singularity at 0. In this case, we have

(242 (A) d
A + exp(e

and consequently, by (2.37)

(2.43) 1 - n -n 2 Int. A)_

T-G-T A(I A)2

as * -. Once again, it follows that there is only an infinitesimal gain in regularity

across the lines x - * t * A + ;(0). However, the more precise asymptotic estimate

(2.43) yields more information concerning continuity. using (2.43) and formula (9) from

Section 4.26 of (31, it is not difficult to show that the solution of (1.1), (1.2), (1.3a)

is continuous across the lines x = t . b + ;(0) for all t > 0, and the solution of

(1.1), (1.2), (1.3b) is of class C
1 

across these lines for all t > 0.
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E. General Remarks

It is clear that the above analysis is applicable to more general classes of singular

kernels. The crucial factor is the asymptotic behavior of ;(X) as X -, which, of

course, is related to the behavior of m(t) as t + 0
+ . 

If m1 (t) - m2 (t) as t + 0
+

(and some mild regularity conditions hold) then m I() m2 (A) as X + - in any sector of

the form larg X1. 
• * <1. (See, for examiple, Theorem 33.2 of 1].) Unfortunately, such a

result is not quite sufficient to give a precise regularity theory for (1.1) which is based

solely on the behavior of m(t) as t - 0
+
. However, it is easy to see that our arguments

can be applied to any kernel whose laplace transform is suitably behaved In the right half

plane.

If m belongs to L1 (0,) and is completely monotone (i.e., m e C (O,-) and

(-1)km(k)(t) ; 0 for all t > 0, k - 0, 1,.), then m can be continued analytically to

the slit half plane CN(-,0] and the contour of Figure I can be used in (2.5) for

0 4 x < t *•b + ;(O). Moreover, u, ut, ux , utt, and Utx are continuous across x - 0

for t > 0 and the jump J defined by (2.8) is analytic on (0,-). The only nontrivial

cases in which J vanishes identically occur when m is an exponential of the form

(2.10). (See (2.13) and (2.15).) We conjecture that if m is completely monotone,

integrable, and m(O
+
) = -, then the solution of (1.1), (1.2), (1.3a) is continuous (and

the solution of (1.1), (1.2), (1.3b) is of class C
I
) across the lines

x t .lb + ;(0) for all t > 0.

It is to be expected that if m e C*(O,-) n LI (0,), then the solution of (1.1),

(1.2), (2.2) is of class C away from the lines x = 0,x =k t • /b + ;(0). However, it

does not seem easy to prove. A result of this nature is established in the Appendix under

an additional assumption on m, which, rougly speaking, requires that derivatives of m

are not "too wild" near 0.
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3. General Initial Value Problems

Using the results of the preceding section and the method of superposition, it is

straightforward to study smoothness properties of solutions to (1.1), (1.2) with initial

conditions

(3.1) u(x,o) - u0 (x), ut(xO) - ul(x), x e R

for u0 and ul in various function classes. Indeed, under rather mild assumptions on

u0 and ul, the solution of (1.1), (1.2), (3.1) can be written in the form

(3.2) u(x,t) - f . + f- b

where Ua and Ub denote the solutions of (1.1), (1.2), (1.3a) and (1.1), (1.2), (1.3b),

respectively. (Recall that derivatives are to be interpreted in the distributional sense.)

We close with an informal discussion of the regularity of solutions of (1.1), (1.2),

(3.1). Our assumptions on m (and b) are the same as in Section 2.

A. Regular Kernels

Suppose that m satisfies (2.6). If there is a singularity in the data at a point

x0 e R, then three waves will generally emanate from this point. Singularities will

propagate along the lines x = x0 * t A .b + m(0), and (except in very special

circumstances) there will be a stationary singularity at x - x0  for t > 0. Such a

stationary singularity will always be weaker than the corresponding propagating

singularities.

A discontinuity in u(
k ) 

produces propagating discontinuities in k-th derivatives

ofisontileiaiesscontinuityrinati(k)
of u, while a discontinuity in u

) 
propagates in (k+1)-st derivatives of u.

k+2

Discontinuities in u(k) or u(k) both lead to stationary discontinuities in u
ax

k+

If m is a single exponential of the form (2.10), there will be cases in which a

singularity in the data does not lead to a stationary singularity in u. See Section 2A.

-18-
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B. Kernels with Power Type Singularities

For the kernel given by (2.17), the propagating waves will always be of class C.

Consequently, the regularity of u is determined by the stationary singularities. Discon-
ak+2u o

tinuities in u
k ) 

or ul
k ) 

both lead to stationary discontinuities in for

o0  U ax k+2fo

t > 0. Thus, there is a definite (but finite) gain in regularity.

C. Kernels with Logarithmic Singularities

The situation is especially interesting for the kernel given by (2.21). Initially,

the propagating singularities are stronger than the corresponding stationary ones and the

regularity of u increases in a manner proportional to time. This will continue until the

strongest stationary singularity and the strongest propagating singularity are of the same

order. Then, the stationary singularity will dominate and the regularity of u will not

improve any further. As before. discontinuities in Uk) or u k) lead to stationary

discontinuities in ax-k2

D. Kernels with Weaker Singularities

For the kernel (2.30) (or (2.41)), the propagating singularities are stronger than the

correspondIng stationary ones for all time. The smoothing of the propagating waves leads

to only an infinitesimal gain in regularity of u.

For the kernel (2.41), we can, however, make a definite statement concerning

continuity. If u0 e OV(N) and uI 2 0, the solution of (1.1), (1.2), (3.1) is

continuous on R x (0,m)t if u0 2 0 and ul e Bv(s), then the solution of (1.1), (1.2),

(3.1) is of class C
1 

on R x (0,0). We conjecture that this is also true for the kernel

(2.30) (and, more generally for any completely monotonic m e L1 (0,)).

Appendix

In this appendix, we discuss regularity of the solution u of (1.1), (1.2), (2.2)

away from the lines x - 0, x - * t 1b + m(0), under the assumptions that m is non-

negative, nonincreasing, and
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(.1) m e e(O,-) n L (0,-)

and that b 0 0. From previous considerations, we know that the integral in (2.5) vanishes

for x > t * l +;(0). Moreover, u(-x,t) - -u(x,t) for all x, t > 0. It therefore

suffices to study the case 0 ( x < t , Vb + ;(0). For convenience, we set

(a.2) B - b + m(0)

Proposition: Assume that b A 0, m is nonnegative and nonincreasing, and (a.1) holds.

Assume further that for each k - 0,1,..., there exists a number Nk > 0 such that

(a.3) lim sup t umn (t)l <

t*O+

Then, for each x > 0, the solution u of (1.1), (1.2), (2.2) is a C function of t

for t > x/VB, i.e. u(x,o) e C(x/B,-).

Remark: An expanded version of the proof outlined below can be used to show that u is

(jointly) of class C7 on the domain ((x,t) : 0 < x < t * /}.

Sketch of Proof: The argument will be partitioned into several steps. Since we are

interested only in smoothness (and not in asymptotic behavior as t * *), we assume,

without loss of generality, that the support of m is bounded.

Step 1: Consider the function f whose Laplace transform is given by

(a.4) f(A) - A - ;W - i .

By virtue of (a.1), our sign conditions on m and b, and the Riemann-Lebesue lemma, it

follows from Proposition 2.3 of [161 that f is the Laplace transform of a function

f e L1 (0,-). We want to show that, in addition,

(a.5) f e e0,-)

Observe that f satisfies the equation

(a.6) (f + Vs 6).(f + /5 6) B6 - m,

or

(a.7) (f~f)(t) + 2B f(t) -m(t)

where 6 is the Dirac distribution and the * denotes convolution on [0,t]. We can
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always write m in the form m -m + m2, where

(a.8) m 0() - L(-) as A + -, he A ) 0An

for every n > 0 and m2 is nonnegative, nonincreasing, and satisfies

(a.9) m2 e L (0,-)

with Im21 I arbitrarily small. (Note that tmi(t) e L (0,-) and Itm;(t)lI - I.)

It follows from (a.7) that mI e C 10,-), and consequently derivatives of m2 can

grow no faster than derivatives of m near 0. It also follows that

(A.10) ; - -/3 - - 0(-)

,n

for every n > 0 as A X . Therefore, to discuss the regularity of f, it suffices to

consider

(a.11) f2*f 2 + 2/3 f2 = -im2

By choosing m2 sufficiently small, we can guarantee that (a.11) has a solution

f2 L I(0,I) with If 21 1 arbitrarily small.

We rewrite (a.11) as

(a.12) 2f f21t) + 2 ft 2f tt/f2fldr - - m(t)
2 +2 2

from which we find formally

(a.13) 2VB If 2 - 21f21 "f2 1 4 Im 2 1L [t,) [ t/2,) L (0,) L t,)

For each n - 1,2,..., let us set

(a.14) Mn - K-nlm21L -n
n 2 Lt712-n,

(a.15) P -nn 2 2 n

where X is a suitable positive constant (to be chosen later). It follows from (a.13)

that

(a.16) 2/B " F - 2KIm 2 1L1  aM

n.i Ln

If K is large enough, then m Mn <-, and (a.16) yields a bound for Fn  provided
n.i n-i

that KXiM2 L1 Is sufficiently small. By formally differentiatina (a.12), we get ihe same
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kind of estimates for derivatives of m2 by virtue of (a.3).

We can now prove that f e C (0,-) as follows. Let N be a fixed (but arbitrary)

positive integer. Then, we write m - m, + M2, with mI and m2 as above and m2 small

enough so that the procedure outlined above yields estimates for derivatives of m2

through order N. For each e > 0, we set

(a.17) a2 (t) = m2 (t+E), t ) 0

and denote by f2  the solution of
e£

(a.18) 2/i f2 (t) + 2 ft/
2 f (t-T)f (T)dt -m (t)

0 2C 2 ( 
2 t

It is clear that f2 e C[0, ) for each C > 0. Moreover, our estimates for
£

derivatives of m2 hold for derivatives of m2 - independently of e. As C * 0,

f 2 + f2 in L1 (0,0). In addition, f2  and its derivatives through order N are

uniformly bounded on compact subsets of (0,N), and consequently f2 e C N-(0,0). Since

f - f2 e C a[0,), we have f e C N-(0,-). Finally, since N was arbitrary, we conclude

that f e C (0,0).

This procedure also shows that derivatives of f2 satisfy bounds of the form (a.3),

independently of the particular decomposition of m into m1 + m2 . Moreover,

tf-(t) e L1 (0,-) with Itf(t)I arbitrarily small if m2  is sufficiently small.

Step 2: Next, consider the function g whose Laplace transform is given by

fA 1 1

(a. 19)
1 1

As in Step 1, it follows from Proposition 2.3 of (16] that g is the Laplace transform of

a function g e L (0,-). We note that g satisfies

(a.20) (L g (/- 6 + f) - 6

or

(a.21) /B g + f*g -

-1
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As before, to study the smoothness properties of g, it is enough to consider

(a.22) g2 + f2*g 2  - 2

A modified version of the argument in Step 1 shows that g and g2 have the same

regularity properties as f and f2, respectively. Moreover, 1g2 1L1 and Itg'(t)I
L 2 LI

can be made arbitrarily small by choosing m2 sufficiently small.

Step 3: Let c be a positive constant and consider the function h whose laplace

transform is given by

(a.23) ) exp(cX(X))

2From sign conditions on the kernel, etc., we know that h e L 9c[O,-). Observe that h

satisfies the differential equation

(a.24) -0X) - ;(X + h
dA A dA

which translates into

(a.25) th(t) - ft h(T)dr + c ft -g-(T)h(t-Y)dx

As in Step 1, to study the smoothness properties of h, it is enough to consider the

part of h which corresponds to m2 , i.e. the solution h2  of

(a.*26) th (t) - ft h (r)dr + c ft -rg2(-)h(ttd

Indeed, it is easy to see that h - h2 e C[O,-). The argument of Step I cannot be applied

directly to (a.26) because of the singular coefficient on the left-hand side. To overcome

this difficulty, we fix to > 0 and set

(a.27) ft (t) - h2 (t+t0 ), t ) 0

After several changes of variable, (a.26) yields
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(a.28) (t+to0 to(t) t cr t() dT

" t/2 Tg lTl to(t-TldT0 0+ c ft/ 1 r(r)#t(t-T)dT

+ /2 g (t-rldr
t/2

+ tO h2 (r)dT

+ C J0 (t+to-T)g2(t+tO-T)h2 (r)dt

We know a priori that t h2 e L 2E[O,). Moreover, we have information on q2  from

Step 2. A modified version of the procedure of Step 1 can now be used to show that

h e C(0,). (In this case intervals of the form (2 -n,T] with T < should be used in

place of (2-n

Step 4: For a = 1, B - 0, the integrand in (2.5) can be written in the form

x
(a.29) exp[X(t - exp(xAg())

(The case of general a, B follows easily from this one.) We can therefore conclude from

Step 3 that for each (fixed) x > 0, u is a C function of t - /xBi for

t - x//B > 0, and consequently u(x,*) e
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